Crystal Field Analysis and Electron-phonon Coupling in Sc₂O₃:Cr³⁺

M. G. Brik and N. M. Avram^a

Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan

^a Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223, Timisoara, Romania

Reprint requests to Dr. M. G. B.; E-mail: brik@fukui.kyoto-u.ac.jp

Z. Naturforsch. **59a**, 799 – 803 (2004); received June 26, 2004

Crystal field analysis of the energy level structure of the Cr^{3+} ion in the Sc_2O_3 crystal is performed, using the exchange charge model of the crystal field theory. The crystal field parameters acting on the optical electrons of the Cr^{3+} ion at the sites with C_2 and C_{3i} symmetry are calculated from the crystal structure data. On the basis of the comparison between experimental absorption and emission spectra and theoretically calculated energy levels of $Sc_2O_3:Cr^{3+}$, the conclusion is made that the spectroscopic properties of the title host are determined by the Cr^{3+} ion at the positions of C_2 local symmetry. The Stokes shift S=4.32 and the energy of the phonons effectively interacting with an impurity center $\hbar\omega=499~cm^{-1}$ are derived from the experimental spectra of absorption and emission.

Key words: Crystal Field Theory; 3d-ions; Electron-phonon Coupling.